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Abstract
We analyse the discrete form of the Chazy III equation proposed by Labrunie
and Conte, with the help of two different integrability criteria: singularity
confinement and algebraic entropy. We show that for all values of the free
parameter this third-order mapping fails both criteria and thus cannot be
integrable.

PACS numbers: 02.30.Ik, 02.30.Ks

The domain of integrable discrete systems has gone through a period of very fast growth
in the past decade. The previous paucity of results has been replaced by a relative wealth
where one can derive discrete integrable analogues of most well-known discrete systems.
As far as one-dimensional mappings are concerned the most significant result is probably
the discretization of the whole Painlevé/Gambier classification of integrable second-order
differential equations [1] together with the derivation of the discrete analogues of the
six transcendental Painlevé equations [2]. While the domain of integrable second-order
mappings is well (although not yet fully) explored, the situation is different for higher-
order mappings. The results on integrable third- or higher-order mappings are scant. In
[3] we have presented a method for the systematic construction of integrable third-order
mappings, which however are partially linearizable. Hirota and collaborators have presented
some results on difference equations of third order which possess two conserved quantities
[4]. Again in [3] we have shown that the so-called third-order q-PI equation [5] can indeed
be integrated once to an, already known, second-order q-Painlevé equation. Thus, every
new result on integrable higher-order mappings would be most useful information at this
stage.

In this paper, we shall examine the discretization of the Chazy III equation proposed in
[6]. The authors started from the third-order ordinary differential equation:

u′′′ − 2u′′u + 3u′3 = 0 (1)
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and introduced the discretization:

un+1 − 3un + 3un−1 − un−2 + 16(un+1un−1 + unun−2) − 3unun−1 − 27un+1un−2 − un+1un

− un−1un−2 + k(4(un+1un−1 + unun−2) − 3unun−1 − 3un+1un−2 − un+1un

− un−1un−2) + m
(
un+1un−2 + 4

(
u2

n + u2
n−1

)
− 7unun−1 − un+1un − un−1un−2

) = 0. (2)

They then applied the perturbative Painlevé criterion [7] and concluded: ‘Thus, there are great
chances that equation (4) has the Painlevé property when µ′

2 = 0’ (this being our equation (2)
with m = 0). They went on to claim that ‘the condition µ′

2 = 0 is also the only one given
by the singularity confinement criterion’. (As we will show in what follows, this statement
is not correct.) Now the (perturbative) Painlevé property and singularity confinement are two
necessary integrability criteria [8], and thus one would expect the discrete Chazy III equation,
satisfying both, to be a serious candidate for integrability. (Integrability is to be understood
here as either the existence of a sufficient number of conserved quantities or the existence of a
Lax pair leading to a linearization through spectral methods.) To be fair, the authors of [6] do
not claim that (2) with m = 0 is integrable, although they speculate on its integration in their
conclusions. As we shall show in what follows, mapping (2) is a typical nonintegrable discrete
system. It does not possess the singularity confinement property and the degree growth of the
iterates corresponds to a positive algebraic entropy (in the sense of [9]).

Let us first analyse (2) from the point of view of singularity confinement [10]. The
keyword here is singularity. By this we mean any instance where the mapping loses one (or
more) degrees of freedom, i.e. when an iterate does not depend on all the data introduced
through the initial conditions. This is the notion of singularity introduced already in the very
first works on the subject by the present authors [11, 12]. In some cases this loss of degree
of freedom happens when an iterate assumes an infinite value, but this is not, by far, the only
possible singularity (and it may not even be a singularity at all). Confinement in this context
means the recovery of the lost degree of freedom and the way this can be done is through some
indeterminate form such as 0/0, 0 × ∞,∞ − ∞, etc.

Having set the frame we can now proceed to examine mapping (2) with m = 0. For a
generic value of k we find that un may indeed pass through an infinite value at some iteration
but un+1 is finite and depends on the proper number of initial data. Thus this is precisely a case
where ∞ is not a singularity at all. However, there also exist some nongeneric values of k where
∞ is indeed a singularity. For k = −1 we have the pattern {∞,∞}, i.e. if un is infinite (but un−1

is not) then un+1 is also infinite, but then un+2 is finite and recovers the lost degree of freedom
(through a 0/0 indeterminacy) and this singularity is confined. For k = −4 we have the pattern
{∞, f,∞} where f is some finite value. In this case too the mapping recovers its full freedom
after going through the second ∞. Finally, there exists another interesting value k = −9. Here
one possible singularity pattern is {∞, f, g,∞} where f, g are two finite values, with confined
singularity. There is, however, also a possibility {. . .∞, f, g,∞, h, n,∞, p, q,∞ . . .} with
the basic pattern {∞, r, s} (each letter representing some finite value) repeating ad infinitum.
This is not, however, a case of unconfined singularity since it extends all the way to infinity in
both directions.

However, the value u = ∞ is not the only singularity of mapping (2). Going back to the
definition we gave above, it is clear that a singularity appears, for some n, when un+1 does not
depend on un−2. We solve for un+1 from (2):

un+1 = 4(k + 4)un−2un − ((k + 1)un−1 + 1)(un−2 + 3un) + 3un−1

(k + 1)un − 4(k + 4)un−1 + 3(k + 9)un−2 − 1
. (3)
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Requiring ∂un+1/∂un−2 = 0 we find the following equation for un, un−1:

(k + 1)(k + 4)
(
u2

n − u2
n−1

)
+ 36unun−1 + (k + 16)(un−1 − un) − 1/4 = 0. (4)

We remark that when k takes one of the special values k = −1 or k = −4, the relation
between un and un−1 is of the first degree separately in each variable. This has no special
significance, as far as singularity confinement is concerned, though it certainly does simplify
the computations. The confinement of this singularity (which, let us point out, was ignored
by the authors of [6]) means that u must recover the lost degree of freedom through some
indeterminate form 0/0. We have checked that this does not happen. Indeed, iterating the
mapping for a generic k and some 20 iterates, we did not encounter a 0/0 form. In the cases
k = −1, k = −4, we were able to push the calculations to more than 100 iterations. Again, no
possibility of confinement arose. Thus (and given the particularly large number of iterations)
we can conclude with some confidence that mapping (2) does not possess the singularity
confinement property. This is a first indication that this mapping is not integrable.

We now turn to a second discrete integrability criterion of a rational mapping, which is
based on the degree growth of the iterates of some initial condition. A quantity that can be most
easily computed is the degree of the numerators or denominators of (the irreducible forms of)
the iterates. This computation can be performed by introducing homogeneous coordinates and
computing the homogeneity degree. The seminal ideas for this approach are due to Arnold
[13] and Veselov [14]. The second author remarked epigrammatically that ‘integrability has
an essential correlation with the weak growth of certain characteristics’. The notion of weak
growth was made quantitative by Viallet and collaborators [9, 15], leading to the introduction
of algebraic entropy. The latter is defined as E = limn→∞(log dn)/n, where dn is the degree
of the nth iterate. A generic, nonintegrable, mapping leads to an exponential growth of the
degrees of the iterates and thus has a nonzero algebraic entropy, while an integrable mapping
has a zero algebraic entropy. The reason why the degree growth of an integrable mapping is
not maximal lies in the fact that during the successive iterations, the same polynomial factors
appear in the numerator and the denominator of the fraction that represents the nth iterate
of some initial condition and thus cancel out. This factor cancellation is at the origin of the
singularity confinement: if during the iterations the dependent variable takes a value which
corresponds to a root of a polynomial factor, this may lead to a singularity, which, however,
will eventually disappear when the appropriate polynomial factor is cancelled out.

For the initial condition u0, u1, u2 = p/q , we have studied the degree growth in p, q

of un as computed from (3). In the generic k case we have found the following sequence of
degrees:

(0, 0, 1), 1, 2, 4, 7, 13, 24, 81, 149, 274, 504, 927, . . . .

We are clearly in the presence of an exponential growth of the degrees. In fact as is expected,
since the single singularity is nonconfined, no simplification ever occurs. Thus the degrees
have the maximal possible growth. Since the numerator and denominator of un+1 are of degree
one separately in un, un−1 and un−2, we have

dn+1 = dn + dn−1 + dn−2. (5)

It is straightforward to compute the algebraic entropy of mapping (2). From the largest root
of the equation k3 − k2 − k − 1 = 0, we obtain

E = log


1

3
+

(
19

27
+

√
11

27

)1/3

+

(
19

27
−
√

11

27

)1/3



with a numerical value of log(1.84. . .) ≈ 0.61 which is in agreement with the calculated ratio
of the degrees of the iterates.
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We now turn to the nongeneric cases k = −1,−4. In these cases, since there is a second,
confined, singularity in addition to the nonconfined one, we expect some simplification to
occur and thus the growth should be slower than in the generic case. For k = −1 we find
indeed the degree sequence

(0, 0, 1), 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, . . . .

This is again an exponential growth. The relation between the degrees is now

dn+1 = dn−1 + dn−2 + dn−3 (5)

and thus the algebraic entropy is obtained by the largest root of the equation k4−k2−k−1 = 0:

E = −log


(√ 31

108
+

1

2

)1/3

−
(√

31

108
− 1

2

)1/3



leading to a numerical value of log(1.46. . .) ≈ 0.38. In the case k = −4, we have

(0, 0, 1), 1, 2, 3, 4, 7, 11, 17, 27, 42, 66, 104, . . . .

The recursion of the degrees is now

dn+1 = dn + dn−2 + dn−4. (6)

The asymptotic ratio of two successive degrees is given by the single real root of the equation
k5 = k4 + k2 + 1, which has the approximate value of k = 1.57 . . . leading to an algebraic
entropy of 0.45. Thus the special cases k = −1,−4, despite some simplifications, still lead
to exponential degree growth and thus are expected to be nonintegrable.

The main result of this paper is the demise of the Labrunie–Conte discretization of the
Chazy III equation. Thus the question of the existence of an integrable Chazy III mapping
is still open. We would like to conclude this paper with a remark concerning the application
of singularity confinement. In the case of continuous singularity analysis, one must find all
leading singular behaviours and examine the expansions around them before being able to make
a statement on the Painlevé property of the system. Similarly, in the case of discrete systems
the proper application of the singularity confinement criterion requires the examination of all
possible singularities. As we explained above, a singularity is a loss of a degree of freedom
(and not just a diverging value of some iterate). Neglecting these singularities can lead to
erroneous conclusions. In the case at hand the proper analysis of the Chazy III mapping of
[6] allowed us to determine its nonintegrable character in an unambiguous way.
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